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Transient Nonequilibrium Molecular Dynamic
Simulations of Thermal Conductivity: 1. Simple Fluids1

R. J. Hulse,2 R. L. Rowley,2,3 and W. V. Wilding2

Thermal conductivity has been previously obtained from molecular dynamics
(MD) simulations using either equilibrium (EMD) simulations (from Green–
Kubo equations) or from steady-state nonequilibrium (NEMD) simulations. In
the case of NEMD, either boundary-driven steady states are simulated or con-
strained equations of motion are used to obtain steady-state heat transfer rates.
Like their experimental counterparts, these nonequilibrium steady-state meth-
ods are time consuming and may have convection problems. Here we report a
new transient method developed to provide accurate thermal conductivity pre-
dictions from MD simulations. In the proposed MD method, molecules that lie
within a specified volume are instantaneously heated. The temperature decay of
the system of molecules inside the heated volume is compared to the solution of
the transient energy equation, and the thermal diffusivity is regressed. Since the
density of the fluid is set in the simulation, only the isochoric heat capacity is
needed in order to obtain the thermal conductivity. In this study the isochoric
heat capacity is determined from energy fluctuations within the simulated fluid.
The method is valid in the liquid, vapor, and critical regions. Simulated values
for the thermal conductivity of a Lennard-Jones (LJ) fluid were obtained using
this new method over a temperature range of 90 to 900 K and a density range
of 1–35 kmol · m−3. These values compare favorably with experimental values for
argon. The new method has a precision of ±10%. Compared to other methods,
the algorithm is quick, easy to code, and applicable to small systems, making the
simulations very efficient.
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1. INTRODUCTION

Thermal conductivity is obtained from MD using either equilibrium simu-
lations [1–4] (from Green–Kubo equations) or from steady-state nonequi-
librium simulations [5–10]. The Green–Kubo equations used to calculate
thermal conductivity are

λ= V
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·
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〈
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where λ is thermal conductivity, V is volume, T is temperature, kb is
Boltzmann’s constant, jε

α is heat flux, α is the component of the heat flux
vector, t is time, and U is internal energy. Equation (1) shows that the
Green–Kubo relationship must be summed as time goes to infinity. The
heat flux is a system property owing to the sum over all particles in Eq.
(2), and therefore requires numerous evaluations of the correlation func-
tion in Eq. (1) to obtain reasonable statistical accuracy. The slow conver-
gence of the integral in Eq. (1) is also problematic.

Steady-state NEMD simulations are also used to calculate thermal
conductivity. One approach is to specify the heat flux and use the simula-
tion to find the temperature gradient [5]. The thermal conductivity is then
obtained from Fourier’s law. Like its experimental counterparts, this non-
equilibrium steady-state method may have convection problems. Another
method used to calculate thermal conductivity using nonequilibrium MD
is the homogeneous field method [8]. In this method constraint forces are
introduced into the equation of motion to produce a desired heat flow
and the thermal conductivity is then obtained from the force–flux rela-
tionship. However, the applied field must be large to obtain a reasonable
signal-to-noise ratio. Usually simulations at different heat fluxes must be
performed, and the thermal conductivity is obtained from an extrapola-
tion to zero flux. As the magnitude of the applied field is decreased, the
computational time greatly increases. The NEMD methods avoid the long
simulation times that result from the Green–Kubo relationship, but they
still suffer from the difficulty in determining the microscopic heat flux.
The microscopic heat flux is an interparticle dynamic relationship. NEMD
methods cannot easily be applied to systems that have long-range inter-
actions because there are no available methods for calculating long-range
dynamic interactions [11].
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2. THEORY

The proposed method is a nonequilibrium transient method. The sim-
ulations are set-up in a three-dimensional box with periodic boundary
conditions in all three directions. A random point in the simulation is
selected, and all molecules within a specified radius of that point are
instantaneously heated by velocity rescaling. The volume element itself is
treated as a “lumped capacitance” of uniform spatial temperature, and the
kinetic energy of the molecules within the heated volume element is used
to monitor its temperature decay. In this work, we have tracked the tem-
perature decay until it is within 10% of the bulk temperature. This proce-
dure of heating a small volume and recording the temperature–time behav-
ior for a short time is repeated many times to improve statistics for the
temperature versus time curve. A short velocity rescale and a few equi-
librium steps are used between each heating cycle. An average tempera-
ture–time trace can be generated from multiple simulations. Here we have
repeated the temperature jump until the average temperature decay is rea-
sonably smooth as shown in Fig. 1. The resultant temperature–time profile
is compared to the solution of the transient energy equation, in a least-
squares sense, in order to obtain the thermal conductivity.

The transient energy equation balance may be written for a fixed vol-
ume element [12] as
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Fig. 1. Typical transient temperature trace for T =350 K and ρ =25 kmol · m3 with a �T

of 450 K showing the averaged simulation temperature (points) and the solution to Eq. (7)
with regressed λ (line).
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where v is velocity, ρ is density, q is the heat flux, p is pressure, and τ

is the stress tensor. As is commonly done, the initial molecular momenta
are normalized to eliminate any net momenta. The artificial temperature
jump could induce some net convective flow owing to any localized veloc-
ity within the selected volume element at the instant the velocities are
rescaled to simulate the heating pulse. However, our simulations show that
any such induced local molecular momentum is small and does not pro-
duce any directional bulk flow during the simulation of the temperature
decay.

For the case of no bulk velocity, we can simplify Eq. (4) to

∂
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)
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where Fourier’s law, applied to the spherically symmetric case of our
heated volume element, has been used to obtain the second equality.
Expansion of the time derivative on the left gives
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where cv is the constant volume heat capacity. We retain only the first
term on the right because ∂ρ

∂t
=0 for v =0 by the continuity equation and

the volume does not change in time. We thus obtain
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)
, (7)

where we have also assumed that the thermal conductivity is independent
of temperature. Although λ is a function of temperature, we can still use
Eq. (7) by treating λ as an effective thermal conductivity for the particu-
lar temperature jump applied. However, the value of λ obtained may then
depend upon the magnitude of the temperature jump employed.

Equation (7) can be solved for T =T (t, λ) at the center of the heated
volume by application of appropriate initial and boundary conditions. The
initial condition is a step function in temperature between the bulk fluid
temperature and that of the heated volume. We use a Neumann condition
of zero flux at the center of the heated volume and a Dirichelet condition
at a distance of L/2 from the heated center, where L is the simulation cell
linear dimension. The best value of λ is obtained from a least-squares fit
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of the solution obtained from Eq. (7), T =T (t, λ), to the transient temper-
ature trace obtained from the simulation.

The regression of λ from Eq. (7) requires ρ and cv. The density is
fixed as an independent variable of the simulation, but cv may be deter-
mined from the simulation. The energy fluctuations in a canonical simu-
lation using are related to cv by

cv =
〈
U2
〉−〈U〉2

kbT 2
(3)

Our procedure has been to first run the simulation in the canonical ensem-
ble and calculate cv from Eq. (3). The simulation is then changed to a mi-
crocanonical simulation, and the previously discussed procedure of heating
a small volume is followed. The simulated value of λ is then obtained by
adjusting it to give the best match, in the least squares sense, of the sim-
ulated temperatures to Eq. (7).

The value of λ obtained from this procedure is actually the residual
thermal conductivity, λr , because all of the potential energy terms in the
simulation are relative to infinite molecular separation. For example, the
potential energy is obtained from the sum of the pair potentials, which are
zero at infinite separation. Likewise, the energy transfer in the simulated
system is relative to the zero density of infinite volume fluid. Because we
track the temperature of a heated volume element that at all time includes
the same heated molecules, there would be no heat transfer from that vol-
ume element for a zero-density system because there would be no inter-
actions between the heated molecules and the surrounding fluid and λr

would be zero. The zero-density thermal conductivity, λ0, can be obtained
from the well-known Chapmon–Enskog [13] solution of the Boltzmann
equation:

λ0 =2.63 ·10−23 (T /MW)1/2

σ 2	V
(8)

where λ0 is in units of W · m−1·K−1, T is in units of K, MW is the
molar mass in kg · mol−1, σ is a characteristic dimension of the molecule
in units of m, and 	v is a dimensionless collision integral. The actual ther-
mal conductivity is then obtained from the sum of the residual thermal
conductivity obtained from the simulation and the zero-density Chapmon–
Enskog solution,

λ=λr +λ0 (9)
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3. OPTIMIZATION OF THE PROPOSED METHOD

The efficiency of this transient simulation method depends upon three
main variables: simulation size, size of the heated volume, and the mag-
nitude of the temperature jump. We have optimized each of these vari-
ables to give the best λ precision per CPU time. The number of mole-
cules (N ) used in the simulation determines the simulation size. The size
of the heated volume (VH) is determined by the average number of mole-
cules heated divided by the number density of the simulation.

The simulation size would ideally be small in order to minimize CPU
time, but it must be large enough that the heated fraction of the simulated
fluid is small. The heated volume also needs to be small so that the simu-
lation size can be minimized, but it must contain sufficient molecules that
the calculation of a temperature in the heated volume is meaningful. The
magnitude of the temperature jump must be larger than the typical fluc-
tuation of the temperature of a microcanonical simulation. The larger the
temperature jump, the shorter is the simulation time due to the larger tem-
perature decay obtained from a single simulation. If a small temperature
jump is used, then more simulations must be averaged in order to produce
a smooth temperature decay.

The thermal conductivity of argon was simulated to optimize the
parameters in this method. A central composite design experiment [14]
was set-up to optimize the simulation size, size of the heated volume, and
the magnitude of the temperature jump. These variables were optimized to
give the most precise thermal conductivity data in the liquid, vapor, and
critical regions. Table I gives the specific conditions at which the variables
were optimized. Table I also shows the significant factors, the standard
deviation of the thermal conductivity, and the required number of inte-
grations steps, which will be discussed later in the paper. The conditions
at which the central composite design experiment was run are shown in
Table II. The data obtained from the central composite design were fit to,

Table I. Optimization Conditions and Results

λ (mW · m−1 ·K−1)
Significant Average (Standard Integration

Regions T (K) ρ (kmol · m3) factors deviation) steps required

Liquid 90 35 X2,X1 ·X2,X
2,X2

2 134.7 (4.70) 32,000
Vapor 100 1 None 7.8 (0.225) 83,000
Critical 350 30 X2,X3,X

2
3 107.1 (4.57) 69,000
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Table II. Central Composite Design

N (molecules) VH (molecules) �T (K)

100 3 300
1000 3 300

100 3 1000
1000 3 1000

100 10 300
1000 10 300

100 10 1000
1000 10 1000

550 7 650
550 7 650
550 7 650

50 7 650
1329 7 650

550 7 44.5
550 7 1255.5
550 1 650
550 13 650
550 7 650
550 7 650
550 7 650

Y = A+BX1 +CX2 +DX3 +EX1X2 +FX1X3

+ GX2X3 +HX2
1 + IX2

2 +JX2
3 (7)

where X1 is the simulation size, X2 is the heated volume, X3 is the tem-
perature jump, and A to J are regressed constants. The significant factors
at the 95% confidence level that reduced the error between the simulated
thermal conductivity and the thermal conductivity of argon correlated by
Hanley [15] are given in Table I. The reason that there are no signifi-
cant factors in the vapor region is that the reduced thermal conductiv-
ity obtained from the simulation is small compared to the zero-density
portion of the reduced thermal conductivity, λ0. Both X2 and X2

2 would
be significant in the vapor region if the confidence level was decreased to
90%. The regression showed that the heated volume must be minimized.
When the heated volume is minimized, the effect of the other significant
factors is also reduced. The factors were optimized to simultaneously min-
imize the error in all three regions.

The optimized values for the simulation size, size of the heated vol-
ume, and the magnitude of the temperature jump are 100 molecules, 3
molecules, and 450 K, respectively. The simulation size and heated volume
allow for quick simulations. The optimized magnitude of the temperature



8 Hulse, Rowley, and Wilding

jump allows for quick convergence but also results in an extremely large
temperature gradient. The critical region is the only region in which the
size of the temperature jump appears to be significant. Figure 2 shows the
simulated thermal conductivity in the critical region for a range of tem-
perature jumps. The regressed thermal conductivity is constant for temper-
ature jumps less than 650 K. The optimized temperature jump, 450 K, is
well below this value. A large temperature jump may also cause velocity
gradients, which would invalidate Eq. (7). Because only a small number of
molecules are heated, one would expect bulk velocities to form very slowly.
The time that it takes for the temperature decay data to be recorded is sig-
nificantly shorter than the time that it would take for a bulk velocity to
form.

The precision of the new method was determined by running ten sim-
ulations all of which had different starting configurations at each of the
conditions listed in Table I. The mean and the standard deviation of the
ten simulations are given in Table I. These standard deviations in the sim-
ulated thermal conductivity correspond to confidence intervals of ±2.5%,
±2.06%, and ±3.05% at the 95% confidence level for the liquid, vapor, and
critical regions, respectively. The last column in Table I shows the average
number of integration time steps in the ten simulations that are required
to simulate the thermal conductivity. As expected, the number of integra-
tion steps increases as the density of the simulation decreases.
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Fig. 2. Dependence of the thermal conductivity on the temperature jump in the critical
region.
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4. RESULTS FOR LENNARD-JONES FLUID

This new procedure was used to calculate the thermal conductivity of a
Lennard-Jones (LJ) fluid. The results using ε/kb =121.85 K and σ =3.429 Å
for argon are given in Table III. The ideal gas (IG) values in Table III were
predicted using Eq. (8). The shaded area is the two-phase region.

The deviations between the values in Table III and the correlation for
argon proposed by Hanley [15] are shown in Table IV. The Hanley correla-
tion is applicable only to 400 K. The largest deviation between the correla-
tion and the simulated data is observed at 150 K and 10 kmol · m−3, which
is in the critical region (Tc =150.86 K and ρc =13.4 kmol · m−3) for argon.
Near the critical point the correlation length of the fluid diverges. The size
of the simulation cell must be twice the size of the correlation length to
model the fluid accurately when using periodic boundary conditions. In
order to maximize the efficiency of the simulation, a small simulation cell
was used. Our results in the critical region are expected to suffer from the
inability to adequately simulate over the actual correlation length.

Experimental thermal conductivity data have been compiled for argon
[16, 17]. The simulated data points in Table III were interpolated to match
the conditions of the experimental data. The deviations between the inter-
polated simulation data and the experimental data are shown in Fig. 3.
As the density increases, the deviations in the simulated thermal conduc-
tivity go from a positive to a negative bias. This is consistent with the fact
that the thermal conductivity in portions of the fluid is actually being sam-
pled at a slightly higher temperature than the bulk temperature because of
the temperature jump. The liquid thermal conductivity of argon decreases
as the temperature increases, and the vapor thermal conductivity increases

Table III. Simulated Thermal Conductivity of Argon in mW · m−1·K−1

T (K)

ρ (kmol · m−3) 90 95 100 150 250 350 450 600 750 900

IG 5.69 6.01 6.34 9.55 15.19 19.92 24.07 29.56 34.42 38.86
1 7.1 7.4 7.8 11.0 16.8 21.5 26.0 31.5 37.0 41.9
5 15.3 21.0 26.9 32.4 37.3 43.5 48.8

10 26.7 31.1 33.9 41.1 48.8 53.1 55.8
15 40.9 39.7 44.8 50.6 53.5 64.9 68.2
20 43.5 52.3 58.9 62.1 72.5 79.9 83.7
25 79.8 59.8 63.5 61.4 64.7 73.3 82.8 96.8 100.3 99.3
30 90.0 86.6 84.6 95.4 102.7 107.8 112.7 122.5 130.5 119.3
35 134.7 138.4 134.5 140.6 134.7 154.4 158.1 156.0 155.7 152.2
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Table IV. Deviations between Simulated LJ Thermal Conductivity and the Correlation Pro
posed by Hanley et al. [15]

T (K)

ρ (kmol · m−3) 90 95 100 150 250 350

IG 0% 0% 0% 0% 0% 0%
1 5% 5% 1% −2% −3% −3%
5 17% −1% −7%

10 33% −12% −6%
15 16% −2% −2%
20 9% −1% −2%
25 −16% 12% 6% 7% 10% 10%
30 4% 6% 7% −6% −1% 7%
35 −6% −10% −8% −14% 5% 4%
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Fig. 3. Deviations between simulation and experimental data [14, 15].

with a temperature increase. These temperature trends are consistent with
the S-shaped bias in the deviations.

Previous researchers have simulated the thermal conductivity of argon
using EMD and NEMD techniques. The results of previous researchers
are given in Table V along with the results from this work. The values
reported for this work have been interpolated from Table III. The data
from the rapid transient method developed here compares favorably with
the correlated experimental data and is generally as good or better than
that generated using other simulation methods
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Table V. Comparison of Proposed Method to Previous Methods

λ (mW · m−1·K−1)

Volegsang Paolini Heyes [10] Muller- Hoheisel This Correlation,
et al. [3] et al. [7] (NEMD) Plathe [5] [18] Work Hanley

T (K) ρ (kmol · m−3) (EMD) (NEMD) (NEMD) (EMD) et al. [15]

85.30 35.01 – – – 139.6–121.2 143.9 129.10 131.0
88.95 34.77 127.1 126.8 108.6 – – 127.06 126.6

114.54 29.44 94.2 – 70.8 – – 84.77 86.2
154.75 26.77 70 – 56.2 – – 71.89 73.2

5. CONCLUSIONS

A new transient method for calculating thermal conductivity from
molecular dynamic simulations has been devised. The efficiency and
simplicity of the method are strong advantages, allowing quick repeated
simulations on small systems without the addition of added boundary
conditions or modification to the equations of motion. The method has
been benchmarked by comparison to previous simulations as well as to
correlated experimental argon thermal conductivity data. The simulated
thermal conductivity values compare favorably with both previous simula-
tions and the correlated values. The new method is able to predict thermal
conductivity in the liquid, vapor, and critical regions with the exception of
near the critical point.

We assess error associated with this method as approximately ±10%.
The time that is required for the simulation depends upon the density
of the simulation. A low-density fluid take much longer to simulate then
a high-density fluid. The number of integration steps required, using a
time step of 5 × 10−15 s, to obtain a reasonably smooth average temper-
ature decay are 32,000, 69,000, and 83,000 at densities of 35, 30, and
1 kmol · m−3, respectively.
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